Rabu, 13 September 2023

Tanaman Hyper akumulator untuk fitoremediasi

Hiperakumulator adalah tanaman yang mampu mengakumulasi logam berat dalam konsentrasi yang sangat tinggi, yaitu lebih dari 10.000 ppm dalam biomassa kering. Terdapat beberapa kriteria agar dapat digolongkan sebagai hyperacumulator diantaranya :

Kemampuan mengakumulasi: Tanaman hyperaccumulator memiliki kemampuan yang tinggi untuk menyerap, mentranslokasi, dan mengakumulasi logam berat atau bahan beracun dalam jaringan tubuh mereka. Mereka mampu mengumpulkan jumlah logam berat yang jauh melebihi tanaman pada umumnya.

Toleransi terhadap toksisitas logam berat: Tanaman hyperaccumulator mampu bertahan dan tumbuh dengan baik di tanah yang terkontaminasi logam berat. Mereka memiliki tingkat toleransi yang tinggi terhadap toksisitas logam berat dan dapat mengeluarkan bahan beracun dari jaringan mereka.
Kepopuleran: Tanaman hyperaccumulator umumnya ditemukan dalam jumlah yang signifikan di habitat yang terkontaminasi logam berat atau bahan beracun.

Kemampuan translokasi: Tanaman ini mampu mentranslokasikan logam berat dari akar ke daun dan bagian atas tanaman lainnya. Mereka akan menghasilkan konsentrasi tinggi logam berat dalam bagian atas tanaman, sehingga memungkinkan pengumpulan yang lebih efisien.

Kecepatan akumulasi: Tanaman hyperaccumulator mampu mengakumulasi logam berat dengan cepat dalam jaringan mereka. Mereka memiliki laju akumulasi yang lebih tinggi dibandingkan dengan jenis tanaman lainnya.

Beberapa contoh tanaman hyperacumulator dan zat pencemar yang dapat diserap ditampilkan pada foto dan tabel berikut ini :


Sedum alfredii
Sedum alfredii
Alyssum bertolonii


  • Noccaea caerulescens


    Populus canescens 


    Rorippa globosa



    Solanum nigrum



    Thlaspi caerulescens



    Thlaspi-caerulescens


    Viola calaminaria



  • Alyssum murale


    Alyssum murale


    Arabidopsis halleri



    Atriplex halimus



    Betula pubescens


    Betula pubescens


    Brassica juncea



    Dicranopteris linearis



    Pteris vittata



    Canabis sativa




    Lantana camara




    Leontodon autumnalis



    Leontodon autumnalis


    Dicranopteris linearis



    Cardamine hupingshanensis


    Helianthus annuus


    Phragmites australis


    Lycopersicon esculentum









    Tanamam
    Hyper
    akumulator
    Zat  pencemar
    yang diserap
    Referensi sumber 
    Sedum alfrediiKadmium (Cd), Timbal (Pb), Seng (Zn)Zhao, F.J., Lombi, E., Breedon, T., et al. (2002). Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant and Soil, 249(1), 37-43.
    Pteris vittataArsen (As), Antimon (Sb)Ma, L., Komar, K.M., Tu, C., et al. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579.
    Arabidopsis halleriTimbal (Pb), Seng (Zn), Kadmium (Cd)Hanikenne, M., Talke, I.N., Haydon, M.J., et al. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453(7193), 391-395.
    Noccaea caerulescensKadmium (Cd), Timbal (Pb), Seng (Zn), Nikel (Ni)Macnair, M.R., & Bert, V. (2003). The evolution of traits conferring adaptation to serpentine soils. In A. J. M. Baker, T. E. M. Lambers, & M. C. A. Mingorance (Eds.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 253-288). CRC Press.
    Betula pubescensAluminium (Al)Yu, S., Li, X., Wang, H., et al. (2019). Moss-induced alleviation of aluminum toxicity in Betula pubescens: physiological and gene expression analysis. BMC Plant Biology, 19(1), 414.

    Sedum alfrediiKadmium (Cd), Timbal (Pb), Seng (Zn)Zhao, F.J., Lombi, E., Breedon, T., et al. (2002). Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant and Soil, 249(1), 37-43.
    Pteris vittataArsen (As), Antimon (Sb)Ma, L., Komar, K.M., Tu, C., et al. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579.
    Arabidopsis halleriTimbal (Pb), Seng (Zn), Kadmium (Cd)Hanikenne, M., Talke, I.N., Haydon, M.J., et al. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453(7193), 391-395.
    Noccaea caerulescensKadmium (Cd), Timbal (Pb), Seng (Zn), Nikel (Ni)Macnair, M.R., & Bert, V. (2003). The evolution of traits conferring adaptation to serpentine soils. In A. J. M. Baker, T. E. M. Lambers, & M. C. A. Mingorance (Eds.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 253-288). CRC Press.
    Betula pubescensAluminium (Al)Yu, S., Li, X., Wang, H., et al. (2019). Moss-induced alleviation of aluminum toxicity in Betula pubescens: physiological and gene expression analysis. BMC Plant Biology, 19(1), 414.
    Alyssum muraleNikel (Ni), Timbal (Pb), Seng (Zn)Baker, A.J., McGrath, S.P., Reeves, R.D., et al. (1994). Cadmium and nickel uptake by Thlaspi spp. from soils contaminated by zinc smelting: Experimental evidence concerning the use of hyperaccumulators in waste mineralogy. Environmental Science and Technology, 28(5), 860-865.
    Brassica junceaKrom (Cr), Timbal (Pb), Seng (Zn)Pilon-Smits, E.A.H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
    Helianthus annuusKrom (Cr), Timbal (Pb), Serium (Se)Dhankher, O.P., Li, Y., Rosen, B.P., et al. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nature Biotechnology, 20(11), 1140-1145.


    Thlaspi caerulescensKadmium (Cd), Timbal (Pb), Seng (Zn), Krom (Cr)Krämer, U., Cotter-Howells, J.D., Charnock, J.M., et al. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379(6563), 635-638.
    Populus canescensKrom (Cr), Kadmium (Cd), Seng (Zn)Shahid, M., Pinelli, E., Pourrut, B., et al. (2012). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 213, 27-45.
    Viola calaminariaTimbal (Pb), Kadmium (Cd), Seng (Zn), Nikel (Ni)Shirali, N., Khoshgoftarmanesh, A.H., Shariatmadari, H., et al. (2020). Cadmium, zinc, lead, and nickel concentrations and their interaction in halophytic and non-halophytic plants in zinc-contaminated soils in Iran. Journal of Plant Nutrition and Soil Science, 183(1), 55-64.
    Atriplex halimusNatrium (Na), Kalsium (Ca), Magnesium (Mg)Baâtour, O., Debez, A., Ben Ammar, W., et al. (2013). Differential responses of Atriplex halimus exposed to drought and salt stresses. Ecotoxicology and Environmental Safety, 91, 78-86.
    Phragmites australisTimbal (Pb), Arsen (As), Seng (Zn)Liu, G., Guo, X., Liu, D., et al. (2020). Trace metal contamination of wetland ecosystems in China and its global implication. Journal of Environmental Management, 258, 110003.
    Cardamine hupingshanensisKadmium (Cd), Timbal (Pb), Seng (Zn)Luo, X., Wang, L., Li, Z., et al. (2014). Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. Journal of Hazardous Materials, 274, 341-348.
    Leontodon autumnalisSeng (Zn), Nikel (Ni), Timbal (Pb)Dimitriou, I., Martens, S., Dimitriou, D., et al. (2016). Use of metal-accumulating plants in northwestern Macedonia: benefits and risks. Journal of Soils and Sediments, 16(5), 1685-1696.
    Lycopersicon esculentumTimbal (Pb), Kadim (Cd), Krom (Cr)Ayangbenro, A.S., & Babalola, O.O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.

    abel 2. Jenis tumbuhan berpotensi sebagai hiperakumulator

    (sumber : Fitoremediasi dan Potensi Tumbuhan Hiperakumulator - ScienceDirect )

    Jenis kontaminanTumbuhan
    Zn (zink)Thlaspi caerulescens, T. calaminare, Sambucus, Rumex
    Cd (kadmium)Thlaspi caerulescens, Sambucus, Rumex, Mimulus guttatus, Lolium miscanthus
    Pb (plumbum)Lolium miscanthus, Thlaspi rotundifolium
    Co (kobalt)Agrostis gigantea, Haumaniastrum robertii, Mimulus guttatus
    Cu (kuprum)Aeolanthus biformifolius, Lolium miscanthus
    Mn (mangan)Alyxia rubricaulis
    Ni (nikel)Alyssum bertolonii, A. lesbiacum, Berkheya coddii, Hybanthus floribundus, Thlaspi goesingense, T. montanum, Senesio coronatus, Lolium miscanthus, Phyllanthus serpentinus
    Cs (sesium)Amaranthus retroflexus
    As (arsenik)Reynoutria sachalinensis, Chlamidomonas sp.
    Se (selenium)Astragalus racemosus
    Fe (ferum)Poaceae
    Hg (merkurium)Arabidopsis thaliana
    SalinitasAttriplex spp., Halosarcia spp., Enneapogon spp.
    Minyak bumiEuphorbia, Cetraria, Amaranthus retroflexus
    Alyssum bertoloniiNikel (Ni), Krom (Cr), Kobalt (Co)Baker, A.J.M., McGrath, S.P., Reeves, R.D., & Smith, J.A.C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water (pp. 85-107). CRC Press.
    Brassica junceaKadmium (Cd), Timbal (Pb), Seng (Zn)Nair, P.M.G., Chung, I.M., & Kim, S.H. (2020). Cadmium, lead, and zinc phytoextraction potential and their redistribution in oilseed crops: A systematic review. International Journal of Environmental Research and Public Health, 17(10), 3788.
    Sedum alfrediiKadmium (Cd), Seng (Zn), Timbal (Pb)Wang, X., & Chen, Y. (2012). Lead soil contamination and uptake by Chinese cabbage (Brassica pekinensis Rupr.). In 2012 International Conference on Biomedical Engineering and Biotechnology (pp. 316-319). IEEE.
    Cannabis sativaTimbal (Pb), Kadmium (Cd), Nikel (Ni)Sonmez, E., & Turhan, K. (2020). Plants as a bioaccumulator for heavy metals: A case study of Cannabis sativa L. grown in lead-polluted soil. Environmental Technology & Innovation, 19, 101043.
    Pteris vittataArsen (As), Timbal (Pb), Kadmium (Cd)Nascimento, C.W.A., Xing, B., & Plekhanova, T.V. (2019). Phytoremediation: Role of plants in contaminant fate and effects on soil, water, and air quality. In Environmental Materials and Waste: Resource Recovery and Pollution Prevention (pp. 279-309). Elsevier.
    Solanum nigrumKadmium (Cd), Nikel (Ni), Seng (Zn)Wang, J., Chen, C., Chao, D., et al. (2009). The mechanisms of cadmium detoxification in the hyperaccumulator plant of Sedum alfredii. The Journal of Hazardous Materials, 161(2-3), 946-952.
    Rorippa globosaTimbal (Pb), Kadmium (Cd), Krom (Cr)Akhtar, N., Iqbal, S., Sajad, M.A., et al. (2020). Phytoextraction potential of three plant species from soil artificially contaminated with cadmium and lead. Environmental Science and Pollution Research, 27

    Tidak ada komentar: